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ANALYSIS OF THE METHOD OF UPDATING AGRICULTURAL MAPS BY 

PROCESSING SATELLITE IMAGES AND GEOINFORMATION TECHNOLOGY DATA 

IN THE LAND MANAGEMENT SYSTEM 

 

Abstract 

In the context of the digitalization of the agricultural sector, the implementation of Geographic 

Information Systems (GIS) in the processes of monitoring and managing agricultural land is of 

particular importance. The purpose of this study is to evaluate the effectiveness of GIS tools for 

solving tasks related to the updating of land use contours, the analysis of agricultural land conditions, 

and the support of decision-making processes. A comparative analysis of several functional modules 

and analytical instruments implemented in ArcGIS was carried out. The research employed remote 

sensing data, vector layers of agricultural land, and cadastral information. The results demonstrated 

that the use of GIS technologies significantly improves the accuracy of cartographic materials, the 

efficiency of data updating, and the quality of spatial analysis, which in turn contributes to more 

effective land resource management. The paper provides recommendations for integrating the most 

productive tools into land management and cadastral monitoring practices. 

Keywords: geographic information systems, agricultural lands, land monitoring, spatial 

analysis, remote sensing, land management, resource management. 

 

Introduction  

Global environmental changes increasingly affect the agricultural sector, creating challenges 

such as climate change, yield instability, and inefficient land use. These factors require innovative 

approaches to the planning, monitoring, and management of agricultural resources. In this context, 

Geographic Information Systems (GIS) are becoming essential tools for integrating spatial and 

attribute data, enabling comprehensive land evaluation and supporting sustainable agricultural 

practices. 

Agricultural lands covering vast territories demand accurate inventory and monitoring, 

particularly in relation to environmental standards and state land-use regulations. GIS technologies 

provide capabilities for data collection, processing, analysis, and visualization, offering valuable 

information on soil and climatic conditions, land-use structure, hydrology, and crop productivity. 

Their application improves spatial planning, optimizes resource distribution, reduces environmental 

impacts, and enhances the sustainability of agro-ecosystems. 

Agrolandscapes, as core components of agriculture, require rational use of soil, climate, and 

vegetation resources. However, excessive intensification leads to land degradation and ecological 

instability, underscoring the need for adaptive farming systems and anti-erosion measures. Integrating 

remote sensing with soil survey data offers objective insights into soil condition, pollution levels, and 

land productivity. 

Research objective: The primary aim of this study is to develop and validate an integrated 

GIS-based methodology for updating agricultural maps through the synchronization of multi-

temporal satellite imagery, archival soil survey data, and current cadastral records within the land 

management system of East Kazakhstan Region. 

Research tasks: 
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1. To analyze existing methods of agricultural cartography and identify temporal and spatial 

limitations in conventional map updating procedures based solely on field surveys. 

2. To design a hybrid workflow integrating remote sensing data (Sentinel-2, Landsat) with 

historical soil maps and cadastral layers for automated change detection in land-use patterns. 

3. To validate the accuracy and reliability of updated agricultural contours through ground-

truth verification and cross-comparison with state land cadastre records. 

4. To assess the efficiency gains in terms of processing time, labor requirements, and 

cartographic precision compared to traditional field-based mapping approaches. 

5. To develop a scalable geoinformation model for agrolandscape typology and zoning 

adaptable to different agroclimatic regions. 

To achieve these objectives and validate the proposed methodology, a comprehensive research 

framework was designed integrating multi-temporal satellite imagery processing, GIS-based spatial 

analysis, and field validation procedures. The following section describes the technical 

implementation and data sources employed in this study. 

Object of research 

The object of the study is the processes of spatial analysis and management of agricultural land 

using modern Geoinformation software solutions, with particular focus on the integration 

mechanisms between multi-temporal satellite remote sensing data, archival soil survey materials, and 

cadastral information systems for developing efficient agricultural map updating protocols in the 

context of East Kazakhstan Region's diverse agrolandscape conditions. 

The methodological framework described below was specifically tailored to address the unique 

challenges of semi-arid agrolandscapes in East Kazakhstan Region, where historical soil data from 

the Soviet period must be integrated with contemporary remote sensing observations and current 

cadastral requirements. 

Materials and research methods  
The ArcGIS software package (Esri) was used as the main tool for spatial analysis and digital 

mapping of agricultural lands. It enabled the integration of raster imagery, vector cadastral layers, 

DEMs, and tabular data. Key procedures included land-use layer creation and editing, georeferencing, 

buffer and overlay analyses, spatial queries, thematic cartography, and export to standard formats 

(PDF, JPEG, GeoTIFF, GeoPackage) [6-7]. The Spatial Analyst extension supported slope, aspect, 

and soil moisture assessment, while ModelBuilder automated workflows. 

Study Area and Data Sources 

The methodology combined remote sensing (RS), GIS, and land management materials [10-

11]. The study area—East Kazakhstan Region—covers approximately 4,500 km² and is characterized 

by diverse natural conditions including semi-desert and dry steppe landscapes, which require an 

adaptive approach. Data sources included: 

 Archival soil surveys from 1970–1980 (scale 1:25,000), containing 127 map sheets with 

explanatory documentation; 

 Thematic land-use maps from the Unified State Land Cadastre (USLC) in vector format; 

 Medium-resolution satellite imagery: Landsat 8-9 (30 m spatial resolution, temporal 

coverage 2015–2023) and Sentinel-2 MSI (10 m spatial resolution for visible/NIR bands, temporal 

coverage 2017–2023); 

 Digital Elevation Model (DEM) SRTM with 30 m resolution for terrain analysis; 

 Current cadastral records and administrative boundary data in shapefile format. 

The heterogeneous nature of these datasets—ranging from scanned paper maps to multi-

spectral satellite imagery—necessitated a standardized preprocessing protocol to ensure spatial 

consistency and temporal alignment. The following subsection describes the satellite image 

processing workflow implemented to generate comparable land-use classifications across the 2015-

2023 observation period. 

Satellite Image Processing Workflow. Multi-temporal satellite imagery processing followed a 

standardized protocol to ensure consistency and reproducibility: 
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Image preprocessing: Atmospheric correction using DOS1 (Dark Object Subtraction) method 

for Landsat imagery and Sen2Cor processor for Sentinel-2 data; Radiometric calibration to convert 

DN (Digital Numbers) to Top-of-Atmosphere (TOA) reflectance; Cloud masking using QA bands 

(Landsat) and Scene Classification Layer (Sentinel-2) with cloud coverage threshold <15%; 

Geometric orrection and co-registration with RMS error <0.5 pixel 

Spectral indices calculation: Multiple vegetation and soil indices were computed to 

characterize agricultural land conditions: NDVI (Normalized Difference Vegetation Index): NDVI = 

(NIR - Red) / (NIR + Red) Applied for vegetation vigor assessment and crop type discrimination; 

EVI (Enhanced Vegetation Index): EVI = 2.5 × [(NIR - Red) / (NIR + 6×Red - 7.5×Blue + 1)] Used 

to reduce atmospheric and soil background effects in semi-arid regions; NDWI (Normalized 

Difference Water Index): NDWI = (Green - NIR) / (Green + NIR); Employed for soil moisture 

estimation and waterlogging detection BSI (Bare Soil Index): BSI = [(SWIR + Red) - (NIR + Blue)] 

/ [(SWIR + Red) + (NIR + Blue)] Applied for bare soil and degradation monitoring. 

Classification algorithms: A hybrid classification approach combining supervised and 

unsupervised methods was implemented: 

Maximum Likelihood Classification (MLC): Applied to multi-temporal Landsat composites 

using training samples (n=342 polygons, 15-25 samples per land-use class). Seven agrolandscape 

classes were defined: cropland, orchard, hayfield-pasture, fallow land, degraded areas, built-up areas, 

and water bodies. 

Random Forest (RF) classifier: Implemented in ArcGIS Pro using 150 decision trees, with 

spectral bands, vegetation indices, and terrain derivatives (slope, aspect) as input features. Out-of-

bag (OOB) error estimation was used for accuracy assessment. 

ISO Cluster Unsupervised Classification: Applied as preliminary step to identify spectral 

clusters, followed by manual interpretation and class assignment based on field knowledge and high-

resolution imagery from Google Earth. 

Change detection analysis: Post-classification comparison method was employed to detect 

land-use changes between 1980s (digitized archival maps) and 2023 (satellite-derived classification): 

change matrix generation showing transitions between land-use categories; area statistics calculation 

for each transformation type; spatial overlay with soil maps to correlate changes with soil properties 

GIS Processing and Automation. Standardized geoprocessing workflows were developed using 

ArcGIS ModelBuilder to ensure repeatability and reduce processing time: 

1. Automated digitization workflow: georeferencing of 127 archival soil map sheets using first-

order polynomial transformation (RMSE <10 m); On-screen vectorization of soil contours (n=3,847 

polygons) with topological rules (no gaps, no overlaps, minimum polygon area 0.5 ha); Attribute 

table population through automated join with .csv files containing soil characteristics. 

2. Spatial analysis modules. Buffer analysis: Creating 50 m, 100 m, and 200 m buffers around 

water bodies to assess waterlogging risk zones; Overlay analysis: Intersecting soil polygons with 

land-use classification, administrative boundaries, and cadastral parcels using Union and Intersect 

tools; Zonal statistics: Computing mean NDVI, EVI, and elevation values for each soil polygon and 

agrolandscape type; Spatial queries: Extracting parcels meeting specific criteria (e.g., erosion risk 

>moderate, slope >5°, NDVI <0.3). 

3. Validation procedures: Ground Control Points (GCPs) were collected using Trimble GeoXH 

GNSS receivers (horizontal accuracy ±0.5 m) during field campaigns in August-September 2023: 

156 GCPs distributed across study area for positional accuracy assessment; 342 validation sites for 

thematic classification accuracy (minimum 45 sites per land-use class); Confusion matrix generation 

and accuracy metrics calculation: Overall Accuracy (OA), Producer's Accuracy (PA), User's 

Accuracy (UA), and Kappa coefficient. 

Integration with Historical Data. Accelerating soil degradation makes the transition to adaptive 

farming systems critically important. Zotova and Nedikova have shown that GIS-based master plans 

are effective spatial planning tools consistent with the principles of adaptive landscape farming, while 

the methodological foundations of these approaches are detailed in relevant manuals and reviews. 

Their importance is confirmed by both the international scientific community (K. E. Kellogg, J. H. 
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Stallings, H. Janney, R. Lal, D. Pimentel) and domestic research. In particular, M. I. Lopyrev based 

on the materials of the Central Chernozem region showed that the ecologization of agricultural 

technologies contributes to the restoration of the balance of agroecosystems; Kasimov and Rozanov 

developed the conceptual foundations of ecological stabilization of agricultural landscapes, and 

Kovda proposed a biogeochemical framework for assessing transformations of soil and landscape 

systems [13]. 

Modern monitoring integrates satellite data, UAVs, and automated analysis [14]. This study 

proposes a geoinformation model of East Kazakhstan agrolandscapes, combining RS, soil, climate, 

and land-use data to support evaluation, prioritize restoration, and ensure rational land use. The 

integration of archival soil maps (1970-1980s) with contemporary satellite imagery enables 

retrospective analysis of land-use transformations over 40-50 years while maintaining cadastral 

compliance and providing quantitative metrics for land degradation assessment. 

Results and Discussion 

The proposed methodology for updating agricultural maps is based on a multi-layered GIS 

model that integrates heterogeneous spatial datasets within a unified framework. The model 

architecture consists of three interconnected components (Figure 1): 

 

 
Figure 1 – Conceptual architecture of the multi-layered GIS model for agricultural map 

updating 

 

The effectiveness of the geoinformation model depends on its ability to process diverse data 

sources and generate updated cartographic materials with minimal manual intervention. The key 

innovation lies in linking archival soil surveys with contemporary remote sensing data through a 

common spatial reference system, enabling both retrospective analysis and current state assessment 

(Figure 2). 

 
Figure 2 – Groups of indicators for assessing the effectiveness of the use of agrolandsteins 

 

Automated Map Updating Workflow. The core of the proposed methodology is a semi-

automated workflow that reduces map updating time from traditional 18-24 months to 3-4 months. 

The workflow consists of five sequential stages: 

Graphical

In the construction of the 
geoinformation model, various 

sources of spatial data were used as 
the initial input, including satellite 
imagery, results of ground-based 
instrumental surveys (utilizing 

geodetic and satellite positioning 
systems), as well as both raster and 

analog (paper) formats of 
contemporary and archival 

topographic-cartographic materials. 
Additionally, digital spatial data 

presented in vector, GRID (regular 
grid), and TIN (Triangulated 

Irregular Network) formats were 
employed, ensuring a comprehensive 

approach to modeling and spatial 
analysis of the territory.

Attributive

To conduct spatial analysis, a 
database was developed 

containing statistical 
characteristics, quantitative 
and qualitative indicators, as 
well as detailed information 
about specific territories and 
land plots within them. This 
type of database serves as a 

foundation for comprehensive 
assessment of the condition of 
agro-landscapes, as it enables 
the integration of diverse data 

sources and ensures 
completeness, relevance, and 

reliability of the analytical 
results.

Computational and Analytical

Within the scope of the study, key 
indicators affecting the quality of 

land use efficiency assessment 
were identified. The collected data 

were compared and integrated 
using geoinformation methods, 
enabling the identification of 

spatial patterns. The results of the 
analysis were visualized 

graphically, providing a clear 
representation of land distribution 

and condition, and supporting 
informed decision-making 

regarding the rational use of land 
resources.

Natural Indicators:

-soil type;

-humus content;

-landform (relief);

-acidity;

-geomorphological conditions;

Ecological Indicators:

-development of erosion;

-flooding;

-acidification;

-waterlogging;

-expansion of shrub-covered areas;

-stoniness;

Economic Indicators:

-proportion of ploughed land;

-share of population employed in agriculture;

-population density;

-area of land plots;

-cadastral value;

-transportation accessibility;
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Stage 1: Multi-source data integration and preprocessing. A spatially oriented GIS database 

was created by integrating: (a) 127 digitized archival soil map sheets covering 4,500 km²; (b) multi-

temporal Landsat 8-9 and Sentinel-2 imagery for 2015-2023; (c) vector cadastral parcels from USLC; 

(d) SRTM DEM for terrain analysis. All datasets were reprojected to a common coordinate system 

(WGS84 / UTM Zone 45N) and spatially aligned with RMSE <10 meters. 

Stage 2: Vectorization and attribute table generation. Raster soil maps were vectorized using 

a combination of automated edge detection and manual refinement, producing 3,847 soil contours. A 

.csv attribute table containing soil characteristics (texture, depth, parent material, agrochemical 

properties) was prepared and linked to GIS polygons through the soil serial number field. This 

approach eliminated approximately 120 hours of manual data entry and ensures automatic attribute 

updates when source tables are modified (Figure 3). 

 

Table 1 – Assessment scoring system for land degradation processes in agrolandscape 

monitoring 
Degradation Indicator None  

(0 points) 

Initial Stage  

(1 point) 

Moderate Stage  

(3 points) 

High Intensity  

(5 points) 

Water erosion No visible signs Rill erosion on 

slopes >5°, soil 

loss <5 t/ha/year 

Gully formation, soil 

loss 5-15 t/ha/year 

Deep gullies, soil 

loss >15 t/ha/year 

Wind erosion No deflation Slight surface 

deflation, dust 

storms 1-2 

times/year 

Moderate deflation, 

annual dust events 

Severe deflation, 

dune formation 

Waterlogging Groundwater >3 m 

depth 

Seasonal 

waterlogging in 

depressions 

Permanent 

waterlogging, 

gleying process 

Surface water 

stagnation, crop 

failure 

Salinization ECe <2 dS/m ECe 2-4 dS/m, salt 

spots visible 

ECe 4-8 dS/m, 

reduced crop yield 

ECe >8 dS/m, salt 

crusts, barren soil 

Acidification pH 6.5-7.5 pH 5.5-6.5, slight 

acidity 

pH 4.5-5.5, moderate 

acidity 

pH <4.5, strong 

acidity, Al 

toxicity 

Shrub encroachment <5% shrub cover 5-15% shrub cover 

on pastures 

15-35% shrub cover, 

grazing restricted 

>35% shrub 

cover, pasture 

degraded 

Soil compaction Bulk density <1.3 

g/cm³ 

Bulk density 1.3-

1.5 g/cm³ 

Bulk density 1.5-1.7 

g/cm³ 

Bulk density >1.7 

g/cm³, impervious 

layer 

Note: Scores are cumulative. Total degradation index = Σ(individual scores). Classification: 0-3 points = 

satisfactory condition; 4-8 points = moderate degradation; 9-15 points = severe degradation requiring immediate 

intervention. 

 

The territory of the East Kazakhstan region was chosen as the object of analysis and assessment 

of the state of agroland landscapes, as well as the construction of a Geoinformation model [13]. At 

the initial stage, data in vector format on the administrative-territorial division of the region, 

information on agricultural land, data on the level of development of transport infrastructure were 

collected and processed. In addition, soil maps in raster format were loaded, tied to territorial 

boundaries. Based on these data, the following cartographic layers were prepared: "Hydrography", 

"borders", "agricultural land" and others (Figure 4, a). The digital model of the terrain was 

supplemented with relief data presented in the form of horizontal and shadow shading (Figure 4). 
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Figure 3 – Algorithm for creating an Information Map 

 

At the second and third stages of the formation of the agrolandscape map, raster images were 

vectorized and attribute tables were created using the tools of the Geoinformation program. These 

tables contain qualitative and quantitative characteristics of spatial objects. 

 

    
a) b) c) d) 

Figure 4 – Spatial data layers containing information about the territory of the agrolandscape: 

a) topo base of the territory; b) space drawing base of the territory; 

c, d) composite map with integrated layers 

 

Stage 3: Satellite-based land-use classification and validation. Multi-temporal satellite 

composites were classified using Random Forest algorithm (150 decision trees) with spectral indices 

(NDVI, EVI, NDWI, BSI) and terrain derivatives as input features. Seven agrolandscape types were 

identified: cropland (subdivided into cereal crops, industrial crops, vegetables), orchards, vineyards, 

hayfield-pasture, and fallow/degraded areas. 

Classification accuracy assessment based on 342 ground validation sites demonstrated: 

 Overall accuracy: 89.4%; 

 Kappa coefficient: 0.86; 

 Producer's accuracy: 85-94% across land-use classes; 

 User's accuracy: 87-93% across land-use classes. 

The highest classification accuracy was achieved for cropland (92%) and orchards (91%), while 

hayfield-pasture areas showed moderate accuracy (85%) due to spectral similarity with natural 

grasslands. Misclassification occurred primarily along class boundaries and in mixed pixels. 

Stage 4: Soil-landscape integration and agrolandscape typology. The updated land-use 

classification was overlaid with digitized soil maps to create integrated agrolandscape units. Based 

on soil surveys conducted in the study area, the actual composition and spatial distribution of 

predominant soil types were identified. Using these data, agrolandscapes were zoned according to 

soil types, enabling rational land resource allocation while accounting for natural and ecological 

conditions (Figure 6, Figure 7). 

 

Raster Upload

Preparation of raster 
images and 

georeferencing

Vectorization

Processing raster images 
and creating working 

map layers

Attributes

Creating tables with 
attribute information

Zoning the Area

Clustering regions based on 
agroclimatic similarity 

indicators

Data Analysis

Analyzing and interpreting collected data, identifying 
optimization strategies, and generating digital maps

Result

Identifying the integral index of land use efficiency 
and forming resulting map layers



Ізденістер, нәтижелер – Исследования, результаты. №4 (108) 2025, ISSN 2304-3334 
 

 348 

 
Figure 6 – Soil map of the East Kazakhstan region 

 

Granulometric analysis of soil samples (Table 2) revealed no dominant soil fraction, indicating 

incompletely developed parent material. Loamy deposits with balanced sand-clay ratios prevail, 

while calcium carbonate and limestone inclusions improve water and air permeability—critical for 

arid agrolandscapes [16]. A high share of fine particles (<0.01 mm: 35.3-49.1%) reflects strong 

moisture retention capacity and cation exchange potential. 

 

Table 2 – Granulometric analysis data of soil samples 

№
 S

o
il

 p
ro

fi
le

 

H
o

ri
zo

n
 

D
ep

th
, 

см
 

Particle Size Distribution (% by weight) 

Coarse 

sand<b

r>1.0-

0.25 

mm 

Fine 

sand<br>

0.25-0.05 

mm 

Coarse 

silt<br>0

.05-0.01 

mm 

Fine 

silt<br>

0.01-

0.005 

mm 

Coarse 

clay<br>

0.005-

0.001 

mm 

Fine 

clay<br>

<0.001 

mm 

Total 

clay<br

><0.01 

mm 

Textura

l Class 

9 С C 80–90 7,1 25,4 32,2 16,8 5,8 12,7 35,3 Loam 

13 С C 90–100 8,7 22,0 30,0 6,9 13,6 17,8 38,3 Loam 

21 С C 95–105 7,9 19,5 33,7 8,5 11,0 19,4 38,9 Loam 

25 С C 100–

110 

11,5 21,2 18,2 9,5 16,2 23,4 49,1 Heavy 

loam 

Note: Samples collected during field campaign, August 2023. Analysis performed according to ISO 11277:2009 

pipette method. Textural classification follows USDA system: Loam (clay content 25-40%), Heavy loam (clay content 40-

55%). 

 

A spatially oriented database was created with thematic layers on soil types, parent rocks, 

texture, and granulometry by depth [17]. This enables agroecological assessment, land typology, soil-

based zoning (Figure 7), and monitoring of degradation processes. 

 

Validation and Accuracy Assessment. To evaluate the effectiveness of the proposed GIS-based 

methodology, a comprehensive accuracy assessment was conducted comparing the updated digital 

agricultural maps with ground control data and official cadastral records.  

Positional accuracy assessment: A total of 156 ground control points (GCPs) were collected 

using GNSS receivers (horizontal accuracy ±0.5 m) across different agrolandscape types. Comparison 

between digitized parcel boundaries and GCP measurements revealed: 
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 Mean positional error: 9.3 meters (±3.2 m standard deviation); 

 89% of boundary vertices within ±12 meters of actual position; 

 Positional accuracy compliance with national cartographic standards for 1:25,000 scale 

mapping. 

Thematic classification accuracy. Confusion matrix analysis based on 342 validation sites 

showed: 

 Overall classification accuracy: 89.4% for seven agrolandscape types; 

 Producer's accuracy: 85-94% depending on land-use category; 

 User's accuracy: 87-93% across different crop groups; 

 Kappa coefficient: 0.86, indicating strong agreement between classification and ground 

truth; 

Temporal efficiency gains. Comparative analysis of processing time demonstrated: Traditional 

field survey and manual mapping: 22 months for the study area (approximately 4,500 km²); Proposed 

GIS-based hybrid approach: 3.5 months for equivalent coverage; Time reduction: 84% compared to 

conventional methods; Labor requirements decreased from 12 field specialists to 3 GIS analysts plus 

2 field validators. 

Data integration efficiency. The ModelBuilder-based automated workflow processed: 

 127 archival soil map sheets digitized and georeferenced within 18 working days; 

 3,847 individual soil contours vectorized with attribute linkage; 

 Spatial overlay analysis of 5 thematic layers completed in 6 hours (vs. estimated 40-50 hours 

manually); 

 Attribute table population for 3,847 polygons automated through .csv integration, 

eliminating approximately 120 hours of manual data entry. 

These quantitative results confirm that the proposed methodology significantly improves both 

the efficiency and accuracy of agricultural map updating processes while maintaining compliance 

with national cadastral standards. 

 

 
Figure 7 – Zoning the territory according to the soil map 

 

Stage 5: Agrolandscape classification and cadastral compliance. Agrolandscape typology was 

developed by correlating soil-landscape units with land-use categories from the Unified State Land 

Cadastre (USLC). Quantitative and qualitative soil indicators were used to distinguish agrolandscape 

types suitable for different agricultural purposes [18]. Seven agrolandscape types were identified 

based on: (a) homogeneity of landscape-ecological conditions; (b) granulometric and morphological 
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soil composition; (c) compliance with the National Classifier of the Republic of Kazakhstan [19]. 

Their main characteristics are presented in Table 3. 

 

Table 3 – Agrolandscape typology and crop allocation framework aligned with national land-

use classification system 
Agrolandscape Type Dominant Soil 

Types 

Crop Group Recommended 

Crop Subgroups 

USLC 

Code* 

Area in 

Study 

Region 

(ha) 

Cropland - Cereal 

Production (P-CC) 

Chernozems, 

kastanozems 

(loamy texture) 

Cereal crops 

(CC) 

Spring wheat 

(Triticum aestivum), 

barley (Hordeum 

vulgare) 

1.2.1 1,247 

Oats (Avena sativa), 

millet (Panicum 

miliaceum) 

1.2.2 385 

Pulses: peas (Pisum 

sativum), lentils 

(Lens culinaris) 

1.2.3 412 

Cropland - Industrial 

Crops (P-IC) 

Chernozems, 

brown soils (well-

drained) 

Industrial crops 

(IC) 

Oilseeds: sunflower 

(Helianthus annuus), 

rapeseed 

1.2.4 568 

Fiber crops: flax 

(Linum 

usitatissimum), hemp 

1.2.5 124 

Sugar crops: fodder 

maize (Zea mays), 

sugar beet 

1.2.6 293 

Cropland - Vegetable 

Production (P-VC) 

Alluvial soils, 

irrigated 

chernozems 

Vegetable crops 

(VC) 

Melons and gourds 

(fodder, edible, 

technical types) 

1.3.1 156 

 
Starch crops: 

potatoes (Solanum 

tuberosum), sugar 

beets 

1.3.2 218 

 

Orchard 

Agrolandscape (S) 

 

Brown mountain 

soils, foothill 

chernozems 

Fruit and berry 

crops (FBC) 

Apple (Malus 

domestica), apricot 

(Prunus armeniaca), 

cherry orchards 

1.5.1 342 

Vineyards (V) Steppe grape 

varieties (Vitis 

vinifera cultivars) 

1.5.2 87 

Medicinal & 

ornamental 

(MO) 

Medicinal, tonic, and 

ornamental flowering 

plants 

1.4.1 64 

Hayfield-Pasture 

Complex (HP) 

Light chestnut 

soils, solonetz 

complexes 

Fodder crops 

(FC) 

Root and leafy forage 

crops 

1.8.1 1,834 

Annual grasses: 

legumes (vetch, 

clover) and cereals 

(oats, rye) 

1.8.2 976 

Perennial grasses: 

alfalfa (Medicago 

sativa), bromegrass 

(Bromus inermis) 

1.8.3 2,147 

USLC Code = Unified State Land Cadastre classification code according to the National Classifier of the Republic 

of Kazakhstan (Order № 723, Ministry of Agriculture, 2015). Areas calculated based on 2023 satellite classification and 

cadastral database integration. 
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This typology provides a scientific basis for allocating agricultural crops according to natural 

characteristics and for optimizing agro-industrial processes. Under the arid conditions of East 

Kazakhstan, such an approach helps preserve and restore soil fertility, ensure rational resource use, 

and reduce land degradation risks [20]. 

 

Table 4 – Satellite imagery specifications and processing parameters 

Sensor 
Satellite 

Platform 

Acquisition 

Dates 

Spatial 

Resolution 

Spectral Bands 

Used 

Atmospheric 

Correction 
Data Source 

OLI + 

TIRS 
Landsat 8 

2015-05-12 

2018-06-24 

2021-07-15 

30 m 

(multispectral)10

0 m (thermal) 

Bands 2-7: 

Blue, Green, 

Red, NIR, 

SWIR1, SWIR2 

DOS1 (Dark Object 

Subtraction) 

USGS Earth 

Explorer (Path 

148, Row 27) 

OLI-2 + 

TIRS-2 
Landsat 9 

2023-06-18 

2023-08-05 

30 m 

(multispectral) 

100 m (thermal) 

Bands 2-7: Blue, 

Green, Red, 

NIR, SWIR1, 

SWIR2 

DOS1 (Dark Object 

Subtraction) 

USGS Earth 

Explorer (Path 

148, Row 27) 

MSI 
Sentinel-

2A/B 

2017-06-14 

2019-07-22 

2022-08-10 

2023-07-28 

10 m (B2, B3, 

B4, B8) 

20 m (B5, B6, 

B7, B11, B12) 

Bands 2-8, 11-

12: Blue, Green, 

Red, Red Edge, 

NIR, SWIR 

Sen2Cor v2.10 

(Scene 

Classification) 

Copernicus Open 

Access Hub 

(Tile 45TVM) 

C-band 

SAR 

Sentinel-

1A 

2023-03-15 

2023-09-20 
10 m (IW mode) 

VV, VH 

polarization 

Radiometric 

calibration Terrain 

correction (SRTM) 

Alaska Satellite 

Facility 

SRTM 

DEM 

Shuttle 

Radar 

2000 (single 

acquisition) 

30 m (1 arc-

second) 

Single-band 

elevation 

N/A (processed 

product) 

NASA 

EarthData 

Note: All imagery was cloud-masked (threshold <15% cloud coverage), geometrically corrected (WGS84/UTM 

Zone 45N), and co-registered with RMSE <0.5 pixel. Temporal composites were created using median reducer to 

minimize seasonal phenology effects. 

 

According to the proposed methodological approach, seven agrolandscape types were identified 

in East Kazakhstan Region, based on the homogeneity of landscape-ecological conditions, the 

granulometric and morphological composition of soils, and the compliance of land plots with the 

National Classifier of the Republic of Kazakhstan [19]. This typology provides a scientific basis for 

allocating agricultural crops according to natural characteristics and for optimizing agro-industrial 

processes. Under the arid conditions of East Kazakhstan, such an approach helps preserve and restore 

soil fertility, ensure rational resource use, and reduce the risks of land degradation, thereby generating 

significant economic benefits [20]. 

Conclusions 

The current stage of agricultural development requires comprehensive land inventory and 

continuous monitoring. The integration of digital technologies - including modern land management 

methods, remote sensing (RS), and geographic information systems (GIS) - is essential for enhancing 

efficiency [19]. Combining satellite data, archival cartographic materials, and state cadastral records 

enables the rapid development of automated land management projects and supports decision-making 

processes. 

This study successfully developed and validated a hybrid GIS-based methodology for updating 

agricultural maps in East Kazakhstan Region, demonstrating substantial improvements over 

traditional field survey approaches. Key quantitative achievements include: 

Efficiency gains: Reduction of map updating time from 22 months to 3.5 months (84% time 

savings), while decreasing labor requirements by approximately 70% through automated processing 

workflows 

Accuracy validation: Achievement of 89.4% overall thematic classification accuracy and 

positional accuracy within ±9.3 meters (±3.2 m SD), meeting national cartographic standards for 

1:25,000 scale agricultural mapping 
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Data integration: Successful digitization and integration of 127 archival soil map sheets 

covering 4,500 km², creating a spatially oriented database with 3,847 soil contours linked to 

comprehensive attribute tables 

Workflow automation: Implementation of ModelBuilder-based algorithms reducing manual 

processing time for spatial overlay analysis by approximately 85% (from 40-50 hours to 6 hours) and 

eliminating 120+ hours of manual attribute data entry 

Methodological contributions: The joint application of GIS and ecological-landscape 

approaches ensures systematic consideration of natural, technological, and social factors that 

influence sustainable land use. Within this framework, the developed GIS model incorporating soil 

surveys and cartographic materials provides a foundation for spatial analysis, agro-industrial soil 

group identification, and adaptive crop allocation. Based on these data, a methodology was 

established to assess land-use efficiency, diagnose the state of agrolandscapes, classify territories by 

suitability, and provide scientifically grounded recommendations for sustainable land management. 

The practical significance of this research lies in its applicability to national land cadastre 

systems, enabling transition from periodic 5-10-year update cycles to annual or bi-annual monitoring 

regimes. The methodology is scalable to other regions with similar data availability (archival soil 

surveys, medium-resolution satellite imagery, vector cadastral layers) and adaptable to different 

agroclimatic conditions. Future research should focus on integrating UAV-based high-resolution 

imagery for sub-parcel analysis and implementing machine learning algorithms for automated change 

detection in multi-temporal satellite datasets. 
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ЖЕР РЕСУРСТАРЫН БАСҚАРУ ЖҮЙЕСІНДЕ ЖЕРСЕРІКТІК СУРЕТТЕРДІ 

ЖӘНЕ ГЕОАҚПАРАТТЫҚ ТЕХНОЛОГИЯЛАР ДЕРЕКТЕРІН ӨҢДЕУ АРҚЫЛЫ 

АУЫЛ ШАРУАШЫЛЫҚ КАРТАЛАРЫН ЖАҢАРТУ ӘДІСТЕРІН ТАЛДАУ 

Аңдатпа 

Аграрлық секторды цифрландыру жағдайында географиялық Ақпараттық Жүйелерді 

(ГАЖ) ауылшаруашылық жерлерін бақылау және басқару процестеріне енгізудің маңызы 

ерекше. Бұл зерттеудің мақсаты-жерді пайдалану контурын жаңартуға, ауылшаруашылық 

жерлерінің жағдайын талдауға және шешім қабылдау процестерін қолдауға байланысты 

міндеттерді шешуге арналған ГАЖ құралдарының тиімділігін бағалау. ArcGIS-те енгізілген 
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бірнеше функционалды модульдер мен аналитикалық құралдарға салыстырмалы талдау 

жүргізілді. Зерттеу барысында қашықтықтан зондтау деректері, ауылшаруашылық жерлерінің 

векторлық қабаттары және кадастрлық ақпарат пайдаланылды. Нәтижелер ГАЖ 

технологияларын қолдану картографиялық материалдардың дәлдігін, деректерді жаңарту 

тиімділігін, кеңістіктік талдаудың сапасын едәуір жақсартатынын көрсетті, бұл өз кезегінде 

жер ресурстарын тиімді басқаруға ықпал етеді. Құжатта жерге орналастыру және кадастрлық 

мониторинг тәжірибесіне ең өнімді құралдарды енгізу бойынша ұсыныстар берілген. 

Кілт сөздер: географиялық ақпараттық жүйелер, ауылшаруашылық жерлері, жер 

мониторингі, кеңістіктік талдау, қашықтықтан зондтау, жерге орналастыру, ресурстарды 

басқару. 
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АНАЛИЗ МЕТОДОВ ОБНОВЛЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КАРТ 

ПУТЕМ ОБРАБОТКИ СПУТНИКОВЫХ ИЗОБРАЖЕНИЙ И ДАННЫХ 

ГЕОИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В СИСТЕМЕ УПРАВЛЕНИЯ 

ЗЕМЕЛЬНЫМИ РЕСУРСАМИ 

Аннотация  

В условиях цифровизации аграрного сектора особое значение имеет внедрение 

географических информационных систем (ГИС) в процессы контроля и управления 

сельскохозяйственными угодьями. Целью настоящего исследования является оценка 

эффективности инструментов ГИС для решения задач, связанных с обновлением контуров 

землепользования, анализом состояния сельскохозяйственных угодий и поддержкой 

процессов принятия решений. Был проведен сравнительный анализ нескольких 

функциональных модулей и аналитических инструментов, представленных в ArcGIS. В 

исследовании использовались данные дистанционного зондирования, векторные слои 

сельскохозяйственных угодий и кадастровая информация. Результаты показали, что 

применение ГИС-технологий значительно повышает точность картографических материалов, 

эффективность обновления данных, качество пространственного анализа, что, в свою очередь, 

способствует эффективному управлению земельными ресурсами. В документе даны 

рекомендации по внедрению наиболее продуктивных инструментов в практику 

землеустройства и кадастрового мониторинга. 

Ключевые слова: географические информационные системы, сельскохозяйственные 

угодья, мониторинг земель, пространственный анализ, дистанционное зондирование, 

землеустройство, управление ресурсами. 
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