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IN THE LAND MANAGEMENT SYSTEM

Abstract

In the context of the digitalization of the agricultural sector, the implementation of Geographic
Information Systems (GIS) in the processes of monitoring and managing agricultural land is of
particular importance. The purpose of this study is to evaluate the effectiveness of GIS tools for
solving tasks related to the updating of land use contours, the analysis of agricultural land conditions,
and the support of decision-making processes. A comparative analysis of several functional modules
and analytical instruments implemented in ArcGIS was carried out. The research employed remote
sensing data, vector layers of agricultural land, and cadastral information. The results demonstrated
that the use of GIS technologies significantly improves the accuracy of cartographic materials, the
efficiency of data updating, and the quality of spatial analysis, which in turn contributes to more
effective land resource management. The paper provides recommendations for integrating the most
productive tools into land management and cadastral monitoring practices.

Keywords: geographic information systems, agricultural lands, land monitoring, spatial
analysis, remote sensing, land management, resource management.

Introduction

Global environmental changes increasingly affect the agricultural sector, creating challenges
such as climate change, yield instability, and inefficient land use. These factors require innovative
approaches to the planning, monitoring, and management of agricultural resources. In this context,
Geographic Information Systems (GIS) are becoming essential tools for integrating spatial and
attribute data, enabling comprehensive land evaluation and supporting sustainable agricultural
practices.

Agricultural lands covering vast territories demand accurate inventory and monitoring,
particularly in relation to environmental standards and state land-use regulations. GIS technologies
provide capabilities for data collection, processing, analysis, and visualization, offering valuable
information on soil and climatic conditions, land-use structure, hydrology, and crop productivity.
Their application improves spatial planning, optimizes resource distribution, reduces environmental
impacts, and enhances the sustainability of agro-ecosystems.

Agrolandscapes, as core components of agriculture, require rational use of soil, climate, and
vegetation resources. However, excessive intensification leads to land degradation and ecological
instability, underscoring the need for adaptive farming systems and anti-erosion measures. Integrating
remote sensing with soil survey data offers objective insights into soil condition, pollution levels, and
land productivity.

Research objective: The primary aim of this study is to develop and validate an integrated
GIS-based methodology for updating agricultural maps through the synchronization of multi-
temporal satellite imagery, archival soil survey data, and current cadastral records within the land
management system of East Kazakhstan Region.

Research tasks:
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1. To analyze existing methods of agricultural cartography and identify temporal and spatial
limitations in conventional map updating procedures based solely on field surveys.

2. To design a hybrid workflow integrating remote sensing data (Sentinel-2, Landsat) with
historical soil maps and cadastral layers for automated change detection in land-use patterns.

3. To validate the accuracy and reliability of updated agricultural contours through ground-
truth verification and cross-comparison with state land cadastre records.

4. To assess the efficiency gains in terms of processing time, labor requirements, and
cartographic precision compared to traditional field-based mapping approaches.

5. To develop a scalable geoinformation model for agrolandscape typology and zoning
adaptable to different agroclimatic regions.

To achieve these objectives and validate the proposed methodology, a comprehensive research
framework was designed integrating multi-temporal satellite imagery processing, GIS-based spatial
analysis, and field validation procedures. The following section describes the technical
implementation and data sources employed in this study.

Obiject of research

The object of the study is the processes of spatial analysis and management of agricultural land
using modern Geoinformation software solutions, with particular focus on the integration
mechanisms between multi-temporal satellite remote sensing data, archival soil survey materials, and
cadastral information systems for developing efficient agricultural map updating protocols in the
context of East Kazakhstan Region's diverse agrolandscape conditions.

The methodological framework described below was specifically tailored to address the unique
challenges of semi-arid agrolandscapes in East Kazakhstan Region, where historical soil data from
the Soviet period must be integrated with contemporary remote sensing observations and current
cadastral requirements.

Materials and research methods

The ArcGIS software package (Esri) was used as the main tool for spatial analysis and digital
mapping of agricultural lands. It enabled the integration of raster imagery, vector cadastral layers,
DEMs, and tabular data. Key procedures included land-use layer creation and editing, georeferencing,
buffer and overlay analyses, spatial queries, thematic cartography, and export to standard formats
(PDF, JPEG, GeoTIFF, GeoPackage) [6-7]. The Spatial Analyst extension supported slope, aspect,
and soil moisture assessment, while ModelBuilder automated workflows.

Study Area and Data Sources

The methodology combined remote sensing (RS), GIS, and land management materials [10-
11]. The study area—East Kazakhstan Region—covers approximately 4,500 km?2 and is characterized
by diverse natural conditions including semi-desert and dry steppe landscapes, which require an
adaptive approach. Data sources included:

e Archival soil surveys from 1970-1980 (scale 1:25,000), containing 127 map sheets with
explanatory documentation;

o Thematic land-use maps from the Unified State Land Cadastre (USLC) in vector format;

e Medium-resolution satellite imagery: Landsat 8-9 (30 m spatial resolution, temporal
coverage 2015-2023) and Sentinel-2 MSI (10 m spatial resolution for visible/NIR bands, temporal
coverage 2017-2023);

« Digital Elevation Model (DEM) SRTM with 30 m resolution for terrain analysis;

« Current cadastral records and administrative boundary data in shapefile format.

The heterogeneous nature of these datasets—ranging from scanned paper maps to multi-
spectral satellite imagery—mnecessitated a standardized preprocessing protocol to ensure spatial
consistency and temporal alignment. The following subsection describes the satellite image
processing workflow implemented to generate comparable land-use classifications across the 2015-
2023 observation period.

Satellite Image Processing Workflow. Multi-temporal satellite imagery processing followed a
standardized protocol to ensure consistency and reproducibility:
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Image preprocessing: Atmospheric correction using DOS1 (Dark Object Subtraction) method
for Landsat imagery and Sen2Cor processor for Sentinel-2 data; Radiometric calibration to convert
DN (Digital Numbers) to Top-of-Atmosphere (TOA) reflectance; Cloud masking using QA bands
(Landsat) and Scene Classification Layer (Sentinel-2) with cloud coverage threshold <15%;
Geometric orrection and co-registration with RMS error <0.5 pixel

Spectral indices calculation: Multiple vegetation and soil indices were computed to
characterize agricultural land conditions: NDVI (Normalized Difference Vegetation Index): NDVI =
(NIR - Red) / (NIR + Red) Applied for vegetation vigor assessment and crop type discrimination;
EVI (Enhanced Vegetation Index): EVI = 2.5 X [(NIR - Red) / (NIR + 6xRed - 7.5%Blue + 1)] Used
to reduce atmospheric and soil background effects in semi-arid regions; NDWI (Normalized
Difference Water Index): NDWI = (Green - NIR) / (Green + NIR); Employed for soil moisture
estimation and waterlogging detection BSI (Bare Soil Index): BSI = [(SWIR + Red) - (NIR + Blue)]
/ [(SWIR + Red) + (NIR + Blue)] Applied for bare soil and degradation monitoring.

Classification algorithms: A hybrid classification approach combining supervised and
unsupervised methods was implemented:

Maximum Likelihood Classification (MLC): Applied to multi-temporal Landsat composites
using training samples (n=342 polygons, 15-25 samples per land-use class). Seven agrolandscape
classes were defined: cropland, orchard, hayfield-pasture, fallow land, degraded areas, built-up areas,
and water bodies.

Random Forest (RF) classifier: Implemented in ArcGIS Pro using 150 decision trees, with
spectral bands, vegetation indices, and terrain derivatives (slope, aspect) as input features. Out-of-
bag (OOB) error estimation was used for accuracy assessment.

ISO Cluster Unsupervised Classification: Applied as preliminary step to identify spectral
clusters, followed by manual interpretation and class assignment based on field knowledge and high-
resolution imagery from Google Earth.

Change detection analysis: Post-classification comparison method was employed to detect
land-use changes between 1980s (digitized archival maps) and 2023 (satellite-derived classification):
change matrix generation showing transitions between land-use categories; area statistics calculation
for each transformation type; spatial overlay with soil maps to correlate changes with soil properties

GIS Processing and Automation. Standardized geoprocessing workflows were developed using
ArcGIS ModelBuilder to ensure repeatability and reduce processing time:

1. Automated digitization workflow: georeferencing of 127 archival soil map sheets using first-
order polynomial transformation (RMSE <10 m); On-screen vectorization of soil contours (n=3,847
polygons) with topological rules (no gaps, no overlaps, minimum polygon area 0.5 ha); Attribute
table population through automated join with .csv files containing soil characteristics.

2. Spatial analysis modules. Buffer analysis: Creating 50 m, 100 m, and 200 m buffers around
water bodies to assess waterlogging risk zones; Overlay analysis: Intersecting soil polygons with
land-use classification, administrative boundaries, and cadastral parcels using Union and Intersect
tools; Zonal statistics: Computing mean NDVI, EVI, and elevation values for each soil polygon and
agrolandscape type; Spatial queries: Extracting parcels meeting specific criteria (e.g., erosion risk
>moderate, slope >5°, NDVI <0.3).

3. Validation procedures: Ground Control Points (GCPs) were collected using Trimble GeoXH
GNSS receivers (horizontal accuracy £0.5 m) during field campaigns in August-September 2023:
156 GCPs distributed across study area for positional accuracy assessment; 342 validation sites for
thematic classification accuracy (minimum 45 sites per land-use class); Confusion matrix generation
and accuracy metrics calculation: Overall Accuracy (OA), Producer's Accuracy (PA), User's
Accuracy (UA), and Kappa coefficient.

Integration with Historical Data. Accelerating soil degradation makes the transition to adaptive
farming systems critically important. Zotova and Nedikova have shown that GIS-based master plans
are effective spatial planning tools consistent with the principles of adaptive landscape farming, while
the methodological foundations of these approaches are detailed in relevant manuals and reviews.
Their importance is confirmed by both the international scientific community (K. E. Kellogg, J. H.
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Stallings, H. Janney, R. Lal, D. Pimentel) and domestic research. In particular, M. 1. Lopyrev based
on the materials of the Central Chernozem region showed that the ecologization of agricultural
technologies contributes to the restoration of the balance of agroecosystems; Kasimov and Rozanov
developed the conceptual foundations of ecological stabilization of agricultural landscapes, and
Kovda proposed a biogeochemical framework for assessing transformations of soil and landscape
systems [13].

Modern monitoring integrates satellite data, UAVs, and automated analysis [14]. This study
proposes a geoinformation model of East Kazakhstan agrolandscapes, combining RS, soil, climate,
and land-use data to support evaluation, prioritize restoration, and ensure rational land use. The
integration of archival soil maps (1970-1980s) with contemporary satellite imagery enables
retrospective analysis of land-use transformations over 40-50 years while maintaining cadastral
compliance and providing quantitative metrics for land degradation assessment.

Results and Discussion

The proposed methodology for updating agricultural maps is based on a multi-layered GIS
model that integrates heterogeneous spatial datasets within a unified framework. The model
architecture consists of three interconnected components (Figure 1):

Attributive

To conduct spatial analysis, a
database was developed
containing statistical
characteristics, quantitative
and qualitative indicators, as
well as detailed information
about specific territories and
land plots within them. This
type of database serves as a
foundation for comprehensive
assessment of the condition of
agro-landscapes, as it enables
the integration of diverse data
sources and ensures
completeness, relevance, and
reliability of the analytical

Computational and Analytical

Within the scope of the study, key
indicators affecting the quality of
land use efficiency assessment
were identified. The collected data
were compared and integrated
using geoinformation methods,
enabling the identification of
spatial patterns. The results of the
analysis were visualized
graphically, providing a clear
representation of land distribution
and condition, and supporting
informed decision-making
regarding the rational use of land
resources.

results.

Figure 1 — Conceptual architecture of the multi-layered GIS model for agricultural map
updating

The effectiveness of the geoinformation model depends on its ability to process diverse data
sources and generate updated cartographic materials with minimal manual intervention. The key
innovation lies in linking archival soil surveys with contemporary remote sensing data through a
common spatial reference system, enabling both retrospective analysis and current state assessment
(Figure 2).

Economic Indicators:

-proportion of ploughed land;

-share of population employed in agriculture;
-population density;

-area of land plots;

-cadastral value;

-transportation accessibility;

Ecological Indicators:
-development of erosion;
-flooding;

-acidification;

-waterlogging;

-expansion of shrub-covered areas;
-stoniness;

Natural Indicators:

-soil type;

-humus content;

-landform (relief);

-acidity;

-geomorphological conditions;

Figure 2 — Groups of indicators for assessing the effectiveness of the use of agrolandsteins
Automated Map Updating Workflow. The core of the proposed methodology is a semi-

automated workflow that reduces map updating time from traditional 18-24 months to 3-4 months.
The workflow consists of five sequential stages:
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Stage 1: Multi-source data integration and preprocessing. A spatially oriented GIS database
was created by integrating: (a) 127 digitized archival soil map sheets covering 4,500 km2; (b) multi-
temporal Landsat 8-9 and Sentinel-2 imagery for 2015-2023; (c) vector cadastral parcels from USLC;
(d) SRTM DEM for terrain analysis. All datasets were reprojected to a common coordinate system
(WGS84 / UTM Zone 45N) and spatially aligned with RMSE <10 meters.

Stage 2: Vectorization and attribute table generation. Raster soil maps were vectorized using
a combination of automated edge detection and manual refinement, producing 3,847 soil contours. A
.csv attribute table containing soil characteristics (texture, depth, parent material, agrochemical
properties) was prepared and linked to GIS polygons through the soil serial number field. This
approach eliminated approximately 120 hours of manual data entry and ensures automatic attribute
updates when source tables are modified (Figure 3).

Table 1 — Assessment scoring system for land degradation processes in agrolandscape

monitoring
Degradation Indicator None Initial Stage Moderate Stage High Intensity
(0 points) (1 point) (3 points) (5 points)
Water erosion No visible signs Rill erosion on Gully formation, soil | Deep gullies, soil
slopes >5°, soil loss 5-15 t/ha/year loss >15 t/ha/year
loss <5 t/halyear
Wind erosion No deflation Slight surface Moderate deflation, Severe deflation,
deflation, dust annual dust events dune formation
storms 1-2
times/year
Waterlogging Groundwater >3 m Seasonal Permanent Surface water
depth waterlogging in waterlogging, stagnation, crop
depressions gleying process failure
Salinization ECe <2 dS/m ECe 2-4 dS/m, salt ECe 4-8 dS/m, ECe >8 dS/m, salt
spots visible reduced crop yield crusts, barren soil
Acidification pH 6.5-7.5 pH 5.5-6.5, slight | pH 4.5-5.5, moderate pH <4.5, strong
acidity acidity acidity, Al
toxicity
Shrub encroachment <5% shrub cover 5-15% shrub cover | 15-35% shrub cover, >35% shrub
on pastures grazing restricted cover, pasture
degraded
Soil compaction Bulk density <1.3 Bulk density 1.3- | Bulk density 1.5-1.7 | Bulk density >1.7
g/lcms3 1.5 g/cm? g/cms3 g/cms3, impervious
layer

Note: Scores are cumulative. Total degradation index = X(individual scores). Classification: 0-3 points =
satisfactory condition; 4-8 points = moderate degradation; 9-15 points = severe degradation requiring immediate
intervention.

The territory of the East Kazakhstan region was chosen as the object of analysis and assessment
of the state of agroland landscapes, as well as the construction of a Geoinformation model [13]. At
the initial stage, data in vector format on the administrative-territorial division of the region,
information on agricultural land, data on the level of development of transport infrastructure were
collected and processed. In addition, soil maps in raster format were loaded, tied to territorial
boundaries. Based on these data, the following cartographic layers were prepared: "Hydrography",
"borders", "agricultural land" and others (Figure 4, a). The digital model of the terrain was
supplemented with relief data presented in the form of horizontal and shadow shading (Figure 4).
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Raster Upload Vectorization Zoning the Area

Attributes
Preparation of raster Processing raster images : ; Clustering regions based on
images and — and creating working gﬁgﬂ?ﬁ%ﬂfﬁlrﬁm agroclimatic similarity
georeferencing map layers indicators
Data Analysis Result
Analyzing and interpreting collected data, identifying Identifying the integral index of land use efficiency
optimization strategies, and generating digital maps and forming resulting map layers

Figure 3 — Algorithm for creating an Information Map

At the second and third stages of the formation of the agrolandscape map, raster images were
vectorized and attribute tables were created using the tools of the Geoinformation program. These
tables contain qualitative and quantitative characteristics of spatial objects.

) 5
Figure 4 — Spatial data layers containing information about the territory of the agrolandscape:
a) topo base of the territory; b) space drawing base of the territory;
¢, d) composite map with integrated layers

Stage 3: Satellite-based land-use classification and validation. Multi-temporal satellite
composites were classified using Random Forest algorithm (150 decision trees) with spectral indices
(NDVI, EVI, NDWI, BSI) and terrain derivatives as input features. Seven agrolandscape types were
identified: cropland (subdivided into cereal crops, industrial crops, vegetables), orchards, vineyards,
hayfield-pasture, and fallow/degraded areas.

Classification accuracy assessment based on 342 ground validation sites demonstrated:

o Overall accuracy: 89.4%;

« Kappa coefficient: 0.86;

e Producer's accuracy: 85-94% across land-use classes;

o User's accuracy: 87-93% across land-use classes.

The highest classification accuracy was achieved for cropland (92%) and orchards (91%), while
hayfield-pasture areas showed moderate accuracy (85%) due to spectral similarity with natural
grasslands. Misclassification occurred primarily along class boundaries and in mixed pixels.

Stage 4: Soil-landscape integration and agrolandscape typology. The updated land-use
classification was overlaid with digitized soil maps to create integrated agrolandscape units. Based
on soil surveys conducted in the study area, the actual composition and spatial distribution of
predominant soil types were identified. Using these data, agrolandscapes were zoned according to
soil types, enabling rational land resource allocation while accounting for natural and ecological
conditions (Figure 6, Figure 7).
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Figure 6 — Soil map of the East Kazakhstan region

Granulometric analysis of soil samples (Table 2) revealed no dominant soil fraction, indicating
incompletely developed parent material. Loamy deposits with balanced sand-clay ratios prevail,
while calcium carbonate and limestone inclusions improve water and air permeability—critical for
arid agrolandscapes [16]. A high share of fine particles (<0.01 mm: 35.3-49.1%) reflects strong
moisture retention capacity and cation exchange potential.

Table 2 — Granulometric analysis data of soil samples

Particle Size Distribution (% by weight)

é’ Coarse | Fine Coarse Fine Coarse Fine Total Textura
e - sand<b | sand<br> | silt<br>0 | silt<br> | clay<br> | clay<br> | clay<br | | Class
3 5 < r>1.0- | 0.25-0.05 | .05-0.01 | 0.01- 0.005- <0.001 ><0.01

3 S| E 0.25 mm mm 0.005 | 0.001 mm mm

g £ ] mm mm mm
9C C 80-90 7,1 25,4 32,2 16,8 5,8 12,7 35,3 Loam
13C | C 90-100 | 8,7 22,0 30,0 6,9 13,6 17,8 38,3 Loam
21C | C 95-105 | 7,9 19,5 33,7 8,5 11,0 19,4 38,9 Loam
25C | C 100- 11,5 21,2 18,2 9,5 16,2 23,4 49,1 Heavy

110 loam

Note: Samples collected during field campaign, August 2023. Analysis performed according to 1SO 11277:2009
pipette method. Textural classification follows USDA system: Loam (clay content 25-40%), Heavy loam (clay content 40-

55%).

A spatially oriented database was created with thematic layers on soil types, parent rocks,
texture, and granulometry by depth [17]. This enables agroecological assessment, land typology, soil-
based zoning (Figure 7), and monitoring of degradation processes.

Validation and Accuracy Assessment. To evaluate the effectiveness of the proposed GI1S-based
methodology, a comprehensive accuracy assessment was conducted comparing the updated digital
agricultural maps with ground control data and official cadastral records.

Positional accuracy assessment: A total of 156 ground control points (GCPs) were collected
using GNSS receivers (horizontal accuracy 0.5 m) across different agrolandscape types. Comparison
between digitized parcel boundaries and GCP measurements revealed:
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e Mean positional error: 9.3 meters (£3.2 m standard deviation);

e 89% of boundary vertices within £12 meters of actual position;

e Positional accuracy compliance with national cartographic standards for 1:25,000 scale
mapping.

Thematic classification accuracy. Confusion matrix analysis based on 342 validation sites
showed:

Overall classification accuracy: 89.4% for seven agrolandscape types;

Producer's accuracy: 85-94% depending on land-use category;

User's accuracy: 87-93% across different crop groups;

Kappa coefficient: 0.86, indicating strong agreement between classification and ground

truth;

Temporal efficiency gains. Comparative analysis of processing time demonstrated: Traditional
field survey and manual mapping: 22 months for the study area (approximately 4,500 km?); Proposed
GIS-based hybrid approach: 3.5 months for equivalent coverage; Time reduction: 84% compared to
conventional methods; Labor requirements decreased from 12 field specialists to 3 GIS analysts plus
2 field validators.

Data integration efficiency. The ModelBuilder-based automated workflow processed:

e 127 archival soil map sheets digitized and georeferenced within 18 working days;

o 3,847 individual soil contours vectorized with attribute linkage;

« Spatial overlay analysis of 5 thematic layers completed in 6 hours (vs. estimated 40-50 hours
manually);

o Attribute table population for 3,847 polygons automated through .csv integration,
eliminating approximately 120 hours of manual data entry.

These quantitative results confirm that the proposed methodology significantly improves both
the efficiency and accuracy of agricultural map updating processes while maintaining compliance
with national cadastral standards.

Figure 7 — thing the terrifdry according-t'o the soil map

Stage 5: Agrolandscape classification and cadastral compliance. Agrolandscape typology was
developed by correlating soil-landscape units with land-use categories from the Unified State Land
Cadastre (USLC). Quantitative and qualitative soil indicators were used to distinguish agrolandscape
types suitable for different agricultural purposes [18]. Seven agrolandscape types were identified
based on: (a) homogeneity of landscape-ecological conditions; (b) granulometric and morphological
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soil composition; (c) compliance with the National Classifier of the Republic of Kazakhstan [19].
Their main characteristics are presented in Table 3.

Table 3 — Agrolandscape typology and crop allocation framework aligned with national land-

use classification system

alfalfa (Medicago
sativa), bromegrass
(Bromus inermis)

Agrolandscape Type Dominant Soil Crop Group Recommended usLC Areain
Types Crop Subgroups Code* Study
Region
(ha)
Cropland - Cereal Chernozems, Cereal crops Spring wheat 121 1,247
Production (P-CC) kastanozems (CCO) (Triticum aestivum),
(loamy texture) barley (Hordeum
vulgare)
Oats (Avena sativa), 1.2.2 385
millet (Panicum
miliaceum)
Pulses: peas (Pisum 1.2.3 412
sativum), lentils
(Lens culinaris)
Cropland - Industrial Chernozems, Industrial crops | Oilseeds: sunflower 124 568
Crops (P-IC) brown soils (well- (1C) (Helianthus annuus),
drained) rapeseed
Fiber crops: flax 125 124
(Linum
usitatissimum), hemp
Sugar crops: fodder 1.2.6 293
maize (Zea mays),
sugar beet
Cropland - Vegetable Alluvial soils, Vegetable crops | Melons and gourds 13.1 156
Production (P-VC) irrigated (VC) (fodder, edible,
chernozems technical types)
Starch crops: 1.3.2 218
potatoes (Solanum
tuberosum), sugar
beets
Fruit and berry Apple (Malus 151 342
Orchard Brown mountain crops (FBC) domestica), apricot
Agrolandscape (S) soils, foothill (Prunus armeniaca),
chernozems cherry orchards
Vineyards (V) Steppe grape 152 87
varieties (Vitis
vinifera cultivars)
Medicinal & Medicinal, tonic, and 141 64
ornamental ornamental flowering
(MO) plants
Hayfield-Pasture Light chestnut Fodder crops Root and leafy forage 18.1 1,834
Complex (HP) soils, solonetz (FC) crops
complexes Annual grasses: 1.8.2 976
legumes (vetch,
clover) and cereals
(oats, rye)
Perennial grasses: 1.8.3 2,147

USLC Code = Unified State Land Cadastre classification code according to the National Classifier of the Republic
of Kazakhstan (Order Ne 723, Ministry of Agriculture, 2015). Areas calculated based on 2023 satellite classification and

cadastral database integration.
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This typology provides a scientific basis for allocating agricultural crops according to natural
characteristics and for optimizing agro-industrial processes. Under the arid conditions of East
Kazakhstan, such an approach helps preserve and restore soil fertility, ensure rational resource use,
and reduce land degradation risks [20].

Table 4 — Satellite imagery specifications and processing parameters

Sensor Satellite | Acquisition Spatial Spectral Bands Atmospheric Data Source
Platform Dates Resolution Used Correction
Bands 2-7:
2015-05-12 30m . USGS Earth
OLI + Landsat 8 | 2018-06-24 | (multispectral)10 Blue, Green, DOST (Dark_ Object Explorer (Path
TIRS 2021-07-15 | 0 m (thermal) Red, NIR, Subtraction) 148, Row 27)
SWIR1, SWIR2 '
Bands 2-7: Blue,
OLI-2+ | oo o| 2023-06-18 (mulgg r:wal) Green, Red, | DOS1 (Dark Object Egslgfeffgg;h
TIRS-2 2023-08-05 P NIR, SWIRL, Subtraction) b
100 m (thermal) 148, Row 27)
SWIR2
2017-06-14 10 m (B2, B3, Bands 2-8, 11- .
vy | Sentinel- | 2018-07-22 B4, BS) 12: Blue, Green, Senz(ggern\;zlo Cogig;“;gge”
2A/B 2022-08-10 20 m (B5, B6, Red, Red Edge, Classification) (Tile 45TVM)
2023-07-28 B7, B11, B12) NIR, SWIR
C-band | Sentinel- | 2023-03-15 VV, VH Radiometric | A j2qa Satellite
SAR 1A | 2023-09-20 | 10M(IWmode) | o\ rization | Calibration Terrain Facility
correction (SRTM)
SRTM Shuttle 2000 (single 30 m (1 arc- Single-band N/A (processed NASA
DEM Radar acquisition) second) elevation product) EarthData

Note: All imagery was cloud-masked (threshold <15% cloud coverage), geometrically corrected (WGS84/UTM
Zone 45N), and co-registered with RMSE <0.5 pixel. Temporal composites were created using median reducer to
minimize seasonal phenology effects.

According to the proposed methodological approach, seven agrolandscape types were identified
in East Kazakhstan Region, based on the homogeneity of landscape-ecological conditions, the
granulometric and morphological composition of soils, and the compliance of land plots with the
National Classifier of the Republic of Kazakhstan [19]. This typology provides a scientific basis for
allocating agricultural crops according to natural characteristics and for optimizing agro-industrial
processes. Under the arid conditions of East Kazakhstan, such an approach helps preserve and restore
soil fertility, ensure rational resource use, and reduce the risks of land degradation, thereby generating
significant economic benefits [20].

Conclusions

The current stage of agricultural development requires comprehensive land inventory and
continuous monitoring. The integration of digital technologies - including modern land management
methods, remote sensing (RS), and geographic information systems (GIS) - is essential for enhancing
efficiency [19]. Combining satellite data, archival cartographic materials, and state cadastral records
enables the rapid development of automated land management projects and supports decision-making
processes.

This study successfully developed and validated a hybrid GIS-based methodology for updating
agricultural maps in East Kazakhstan Region, demonstrating substantial improvements over
traditional field survey approaches. Key quantitative achievements include:

Efficiency gains: Reduction of map updating time from 22 months to 3.5 months (84% time
savings), while decreasing labor requirements by approximately 70% through automated processing
workflows

Accuracy validation: Achievement of 89.4% overall thematic classification accuracy and
positional accuracy within +9.3 meters (£3.2 m SD), meeting national cartographic standards for
1:25,000 scale agricultural mapping
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Data integration: Successful digitization and integration of 127 archival soil map sheets
covering 4,500 km?, creating a spatially oriented database with 3,847 soil contours linked to
comprehensive attribute tables

Workflow automation: Implementation of ModelBuilder-based algorithms reducing manual
processing time for spatial overlay analysis by approximately 85% (from 40-50 hours to 6 hours) and
eliminating 120+ hours of manual attribute data entry

Methodological contributions: The joint application of GIS and ecological-landscape
approaches ensures systematic consideration of natural, technological, and social factors that
influence sustainable land use. Within this framework, the developed GIS model incorporating soil
surveys and cartographic materials provides a foundation for spatial analysis, agro-industrial soil
group identification, and adaptive crop allocation. Based on these data, a methodology was
established to assess land-use efficiency, diagnose the state of agrolandscapes, classify territories by
suitability, and provide scientifically grounded recommendations for sustainable land management.

The practical significance of this research lies in its applicability to national land cadastre
systems, enabling transition from periodic 5-10-year update cycles to annual or bi-annual monitoring
regimes. The methodology is scalable to other regions with similar data availability (archival soil
surveys, medium-resolution satellite imagery, vector cadastral layers) and adaptable to different
agroclimatic conditions. Future research should focus on integrating UAV-based high-resolution
imagery for sub-parcel analysis and implementing machine learning algorithms for automated change
detection in multi-temporal satellite datasets.
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Anoamna
ArpapnblK ceKTopabl HU(pIaHabIpy KaFaalbiHAa reorpadusuiblk AknapaTThik JKyienepi
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MiHgeTTepAl menryre apHanFad ['AXK kypangapeiablH THIMAUTITIH Oaranay. ArcGIS-te eHrizuirexn
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OipHenie (QyHKIMOHAIABI MOIYJBICP MEH aHAJUTHKAIBIK Kypajjapra CalbICThIpMANbl Tajaay
KYprizinai. 3eprrey OapbIChIHIA KAIIBIKTHIKTaH 30HTaY JEPEKTEepi, ayblIIapyalblIbIK )KepIIepiHiH
BEKTOPJBIK KabaTTapbl JKOHE KamacTPJIBIK akmaparT mnahgamansael.  Hotmwkenep TAXK
TEXHOJIOTHSUIAPBIH KOJJIaHy KapTorpadusiIblK MaTepUaIapAblH JSJIITIH, JSPEeKTepAl JKaHaApTy
THIMJIUTITIH, KeHICTIKTIK TaJIayIbIH CallachlH €I9yip JKaKcapTaThIHBIH KOPCETTi, OYJI 63 Ke3eriHie
KEp pecypcTapbiH TUIMII OacKapyFa bIKnan erefi. Kykarra skepre opHaIacThIpy KOHE KaIaCTPIIbIK
MOHUTOPHHT TOXKIPHUOECIHE €H OHIM/II KYpaap/bl eHTi3y OOMBIHIIA YCHIHBICTAp OCPUITeH.

Kinm ce30ep: reorpadusuiblK aKMapaTThIK JKYWeNep, aybUIapyamblUIblK Kepiepi, Kep
MOHHUTOPHHI1, KEHICTIKTIK Tajijay, KAIIBIKTBIKTaH 30HJTAy, JKepre OpHAJACTBIPYy, PECypCTapibl
Oackapy.
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2Kaszaxckuii HayuoHAIbHbLI A2papHblil UCCIe08ameNbCKull YHUGepcumen,
2. Anmamul, Kazaxcmawn, aslaii@mail.ru
AHAJIN3 METOJIOB OFHOBJIEHU S CEJIbCKOXO3SIMCTBEHHBIX KAPT
IIYTEM OFPABOTKH CITYTHUKOBBIX H305PAKEHU Y JAHHBIX
TEOMH®OPMAIIMOHHBIX TEXHOJIOITU B CUCTEME YIIPABJIEHUSA
3EMEJIbHBIMU PECYPCAMU

Annomauus

B ycrmoBusx mudpoBU3AIMKM arpapHOrO CEKTOpa 0co00e 3HAUYeHHE HMEET BHEIPCHHE
reorpaduueckux uHPopmaruonueix cuctem (I'MC) B mpoiecchl KOHTPOJISE W YIIPaBJICHUS
CEeNTbCKOXO3SICTBEHHBIMU ~ YTOABSIMU. LleJbl0 HACTOSAIIETr0 WCCIEeNOBaHHS SIBJISETCS OLEHKA
sapdpextuBHOCTH MHCTpYMeHTOB ['MIC ms pemieHus 3aj1ad, CBSI3aHHBIX ¢ OOHOBJICHUEM KOHTYPOB
3€MJICTIOB30BAHNS, AHAIM30M COCTOSIHMS CEJIbCKOXO3SWCTBEHHBIX YIOOUH W MOLIEPKKOU
MPOIECCOB NPUHATHS pENICHWH. bbUT TPOBEJEH CPaBHUTENBHBIM  aHAIM3 HECKOJIBKHX
(YHKITMOHATBHBIX MOAYJICH W aHAIMTHYECKUX HWHCTPYMEHTOB, mpejacraBlieHHBIX B ArcGIS. B
WCCIIETOBAaHUH HCIIONb30BAIUCh JAaHHBIE JHUCTAaHIIMOHHOTO 30HAMPOBAHUS, BEKTOPHBIE CIIOU
CEeNTbCKOXO3SMICTBEHHBIX YroAWid H KajmactpoBas wuH(popMmarus. PesymbraTel mMmokasamu, 4TO
npumenenne [ IC-texHonoruit 3Ha4UTeIHHO MOBBIIIAET TOUHOCTh KapTOrpa@uuecKuX MaTepuaios,
3¢ (HeKTUBHOCTH OOHOBJICHUS JJaHHBIX, KAYECTBO MPOCTPAHCTBEHHOI'O aHAJIN3a, YTO, B CBOIO OUEPEib,
crocobcTByeT 3¢ GEeKTUBHOMY YIIPABICHUIO 3EMENbHBIMU pecypcaMu. B 1okymeHTe aHbI
pEeKOMEHJAMK 10 BHEIPEHUIO Hambosiee MPOAYKTUBHBIX HWHCTPYMEHTOB B  TPAKTHKY
3eMJICyCTPONCTBA U KaJaCTPOBOTO MOHUTOPHUHTA.

Knrwouesvie cnoea: reorpapuueckne WHPOPMALMOHHBIE CHCTEMBI, CEIbCKOXO3SHCTBEHHBIE
yroibsi, MOHUTOPUHT 3€Mellb, IPOCTPAHCTBEHHBI aHalIW3, TUCTAHIIMOHHOE 30HAUPOBAHUE,
3eMJICYCTPONCTBO, YIIPAaBIEHUE PeCypcaMH.
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